INVENTAIRE DE GES DE L'ENTREPRISE

CONTENU DE L'INVENTAIRE

- o Description de l'organisme
- o Période de déclaration et année de référence
- o Responsables de l'inventaire
- o Objectifs de l'inventaire de GES
- o Périmètre organisationnel
- o Périmètre opérationnel
- Quantification des émissions de GES
- Évaluation et réduction de l'incertitude
- Conclusion

DESCRIPTION DE L'ORGANISME

- Accompagne les porteurs de projets qui visent la certification LEED[®] Canada pour les habitations;
- Assure la jonction avec le CBDCa¹;
- 8 évaluateurs écologiques répartis qui couvrent une dizaine de régions du Québec (Montréal, Montérégie, Laurentides, Lanaudière, Estrie, Québec, Mauricie, Saguenay, Outaouais et Bas-St-Laurent)
- o Comptent 169 projets certifiés ou en voie de certification comprenant près de 1000 unités résidentielles.

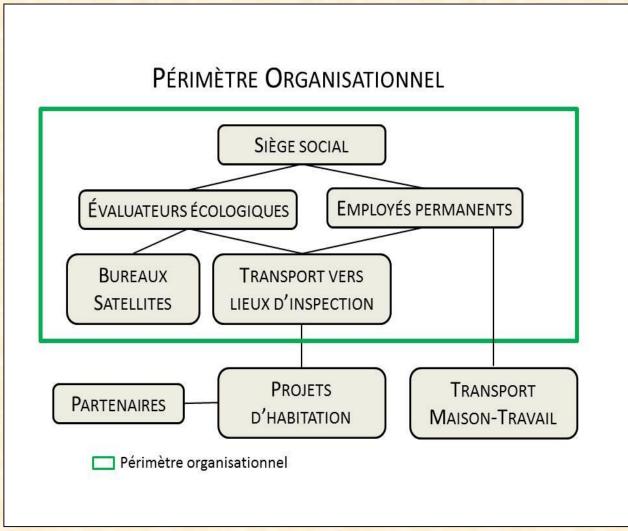
¹ Conseil du bâtiment durable du Canada

PÉRIODE DE DÉCLARATION ET ANNÉE DE RÉFÉRENCE

- o Année civile 2011
- o En fonction de la disponibilité des données;
- Aucun inventaire précédent;
- o Référence pour les inventaires subséquents.

RESPONSABLES DE L'INVENTAIRE:

- o Jean-François Methé, coordonnateur, programme LEED®
- o Dominic Besner, Analyste
- o Dominic Lessard, Analyste
- Karine Nault, Analyste


OBJECTIFS DE L'INVENTAIRE DE GES

- o Déclaration volontaire
- Québec →Plan d'action 2013-2020 sur les changements climatiques : réduction des GES de 20%
- o Objectifs spécifiques:
 - Identifier les sources de GES et les quantifier;
 - Établir une référence dans le but d'un suivi;
 - Encourager la transparence de la performance environnementale.

PÉRIMÈTRE ORGANISATIONNEL

- Bureaux décentralisés:
- 2 employés au siège social (Montréal);
- 8 évaluateurs qui travaillent à partir de leur résidence ou d'un espace à bureaux;
- Se déplacent avec leur véhicule personnel ou Communauto pour les évaluations.

PÉRIMÈTRE OPÉRATIONNEL

ENSEMBLE DES ÉMISSIONS DE GES DE L'ENTREPRISE

TRANSPORTS

CARBURANT
CONSOMMÉ POUR
LE TRANSPORT EN
VOITURE DES 8
ÉVALUATEURS VERS
LES LIEUX
D'INSPECTION

BÂTIMENTS

ÉLECTRICITÉ CONSOMMÉE POUR LE SIÈGE SOCIAL

ÉLECTRICITÉ
CONSOMMÉE POUR
LES 7 BUREAUX
SATELLITES

BIENS ET SERVICES

ACHAT DE BIENS ET MATÉRIEL DE BUREAU

> MATIÈRES RÉSIDUELLES

GAZ CONSOMÉ POUR LE CHAUFFAGE DANS 1 BUREAU SATELLITE

Émissions directes

— — Émissions à énergie indirecte

Autres émissions indirectes

EXCLU DE L'INVENTAIRE

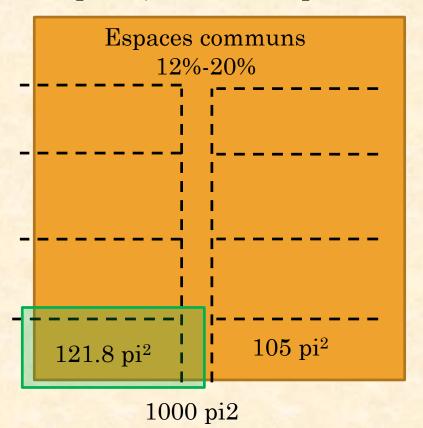
QUANTIFICATION DES ÉMISSIONS DE GES

Cueillette des données auprès des 8 évaluateurs :

- o leur type de voiture et l'année;
- o la quantité de kilomètres parcourus uniquement dans le cadre de leurs évaluations LEED ® en 2011;
- o la superficie qu'occupe leur espace de travail;
- o la superficie totale du bâtiment où ils travaillent;
- le type de chauffage de leur bâtiment (électricité, gaz, huile ou bois);
- o la consommation totale en kilowatts-heure (kWh) pour l'ensemble de leur bâtiment en 2011 et
- o le pourcentage de leur travail lié à l'évaluation LEED®.

QUANTIFICATION DES ÉMISSIONS DE GES Exemple de traitement proportionnel des données

Évaluateur écologique	Superficie totale du bâtiment (pieds ²⁾	Consommation totale du bâtiment (m³)	Superficie de travail (pieds ²⁾	% de travail pour Écohabitation	Consommation attribuée à ÉÉ
Francis Pronovost	40 000	37 000	65	15%	9.02
Étienne Brochu	40 000	37 000	65	10%	6.01
				TOTAL	15,03



QUANTIFICATION DES ÉMISSIONS DE GES

Comment évaluer la superficie de travail correctement?

Inclusion des aires communes (ex.: cafétéria, corridor, réception) dans la superficie de travail de l'évaluateur.

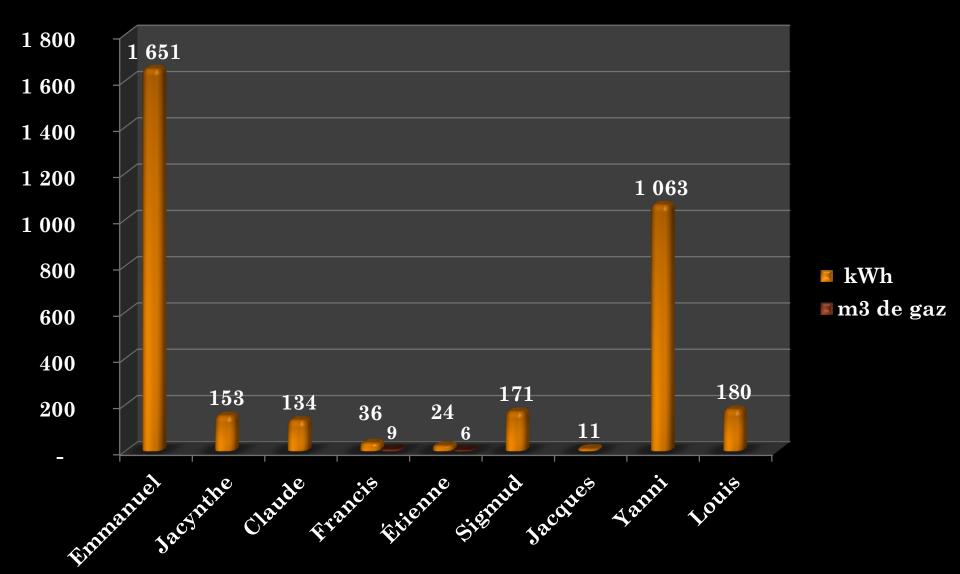
Donnée primaire:

 $105 \text{ pi}^2 / 1000 \text{ pi}^2 = 10.5\%$ des émissions du bâtiment

Donnée ajustée:

 $105 \text{ pi}^2 \times 1.16 = 121.8 \text{ pi}^2$ $121.8 / 1000 \text{ pi}^2 = 12.2\%$ des émissions du bâtiment

QUANTIFICATION DES ÉMISSIONS DE GES


Consommation d'électricité - Bâtiments

- o Utilisation : chauffage et alimentation électrique
 - À l'exception des bureaux de d'Écobâtiment (chauffage au gaz naturel)
- Électricité : évaluation à partir de la facturation d'Hydro-Québec
 - À l'exception du siège social → moyenne selon le kWh au pi2 à partir de deux bâtiments de l'inventaires
 - Total: 14,2 kWh au pi²

Électricité (kWh) et gaz naturel (m³) consommés par évaluateur - 2011

Consommation d'électricité - Bâtiments

Facteurs d'émissions

 $(g/kWh)^1$:

CO	\rightarrow	2
		_

•
$$CH_4 \rightarrow 0,0003$$

•
$$N_2O \rightarrow 0,0002$$

 Potentiel de réchauffement:

$$\circ$$
 CO₂ \rightarrow 1

$$\circ$$
 CH₄ \rightarrow 21

$$0 N_2O \rightarrow 310$$

• Équation:

ns	
	Émissions (t- ${ m CO}_2$ é)
${f CO}_2$	0,0068
\mathbf{CH}_4	0,00002
N_2O	0,0011
Total	0,00697

¹Source: http://www.ec.gc.ca/ges-ghg/default.asp?lang=Fr&n=EAF0E96A-1#note2

$$E_{eCO_2} = 1 \left(kWh \times 2 \; \frac{gCO_2}{kWh} \right) + \; 21 \left(kWh \times 0,0003 \frac{gCH_4}{kWh} \right) + \; 310 \left(kWh \times 0,0001 \frac{gN_2O}{kWh} \right) \times \\ \frac{1}{1\;000\;000} \frac{tonne}{g} = 1 \left(kWh \times 0,0003 \frac{gCH_4}{kWh} \right) + \; 310 \left(kWh \times 0,0001 \frac{gN_2O}{kWh} \right) \times \\ \frac{1}{1\;000\;000} \frac{tonne}{g} = 1 \left(kWh \times 0,0003 \frac{gCH_4}{kWh} \right) + \; 310 \left(kWh \times 0,0001 \frac{gN_2O}{kWh} \right) \times \\ \frac{1}{1\;000\;000} \frac{tonne}{g} = 1 \left(kWh \times 0,0003 \frac{gCH_4}{kWh} \right) \times \\ \frac{1}{1\;000\;000} \frac{tonne}{g} = 1 \left(kWh \times 0,0003 \frac{gCH_4}{kWh} \right) \times \\ \frac{1}{1\;000\;000} \frac{tonne}{g} = 1 \left(kWh \times 0,0003 \frac{gCH_4}{kWh} \right) \times \\ \frac{1}{1\;000\;000} \frac{tonne}{g} = 1 \left(kWh \times 0,0003 \frac{gCH_4}{kWh} \right) \times \\ \frac{1}{1\;000\;000} \frac{tonne}{g} = 1 \left(kWh \times 0,0003 \frac{gCH_4}{kWh} \right) \times \\ \frac{1}{1\;000\;000} \frac{tonne}{g} = 1 \left(kWh \times 0,0003 \frac{gCH_4}{kWh} \right) \times \\ \frac{1}{1\;000\;000} \frac{tonne}{g} = 1 \left(kWh \times 0,0003 \frac{gCH_4}{kWh} \right) \times \\ \frac{1}{1\;000\;000} \frac{tonne}{g} = 1 \left(kWh \times 0,0003 \frac{gCH_4}{kWh} \right) \times \\ \frac{1}{1\;000\;000} \frac{tonne}{g} = 1 \left(kWh \times 0,0003 \frac{gCH_4}{kWh} \right) \times \\ \frac{1}{1\;000\;000} \frac{tonne}{g} = 1 \left(kWh \times 0,0003 \frac{gCH_4}{kWh} \right) \times \\ \frac{1}{1\;000\;000} \frac{tonne}{g} = 1 \left(kWh \times 0,0003 \frac{gCH_4}{kWh} \right) \times \\ \frac{1}{1\;000\;000} \frac{tonne}{g} = 1 \left(kWh \times 0,0003 \frac{gCH_4}{kWh} \right) \times \\ \frac{1}{1\;000\;000} \frac{tonne}{g} = 1 \left(kWh \times 0,0003 \frac{gCH_4}{kWh} \right) \times \\ \frac{1}{1\;000\;000} \frac{tonne}{g} = 1 \left(kWh \times 0,0003 \frac{gCH_4}{kWh} \right) \times \\ \frac{1}{1\;000\;000} \frac{tonne}{g} = 1 \left(kWh \times 0,0003 \frac{gCH_4}{kWh} \right) \times \\ \frac{1}{1\;000\;000} \frac{tonne}{g} = 1 \left(kWh \times 0,0003 \frac{gCH_4}{kWh} \right) \times \\ \frac{1}{1\;000\;0000} \frac{tonne}{g} = 1 \left(kWh \times 0,0003 \frac{gCH_4}{kWh} \right) \times \\ \frac{1}{1\;000\;0000} \frac{tonne}{g} = 1 \left(kWh \times 0,0003 \frac{gCH_4}{kWh} \right) \times \\ \frac{1}{1\;000\;0000} \frac{tonne}{g} = 1 \left(kWh \times 0,0003 \frac{gCH_4}{kWh} \right) \times \\ \frac{1}{1\;000\;0000} \frac{tonne}{g} = 1 \left(kWh \times 0,0003 \frac{gCH_4}{kWh} \right) \times \\ \frac{1}{1\;000\;0000} \frac{tonne}{g} = 1 \left(kWh \times 0,0003 \frac{gCH_4}{kWh} \right) \times \\ \frac{1}{1\;000\;0000} \frac{tonne}{g} = 1 \left(kWh \times 0,00000 \frac{gCH_4}{kWh} \right) \times \\ \frac{1}{1\;000\;0000} \frac{tonne}{g} = 1 \left(kWh \times 0,0000 \frac{gCH_4}{kWh} \right) \times \\ \frac{1}{1\;0000\;0000} \frac{tonne}{g} = 1 \left(kWh \times 0,0000 \frac{gCH_4}{kWh} \right) \times \\ \frac{1}{1\;000\;0000} \frac{tonne}{g}$$

Consommation de gaz naturel - Bâtiments

Facteurs d'émissions (g/m³)¹

CO ₂	10	78
	10	10

$$\bullet \quad \text{CH}_4 \rightarrow 0.037$$

•
$$N_2O \rightarrow 0.03$$

¹ Source: Environnement

Canada 2009

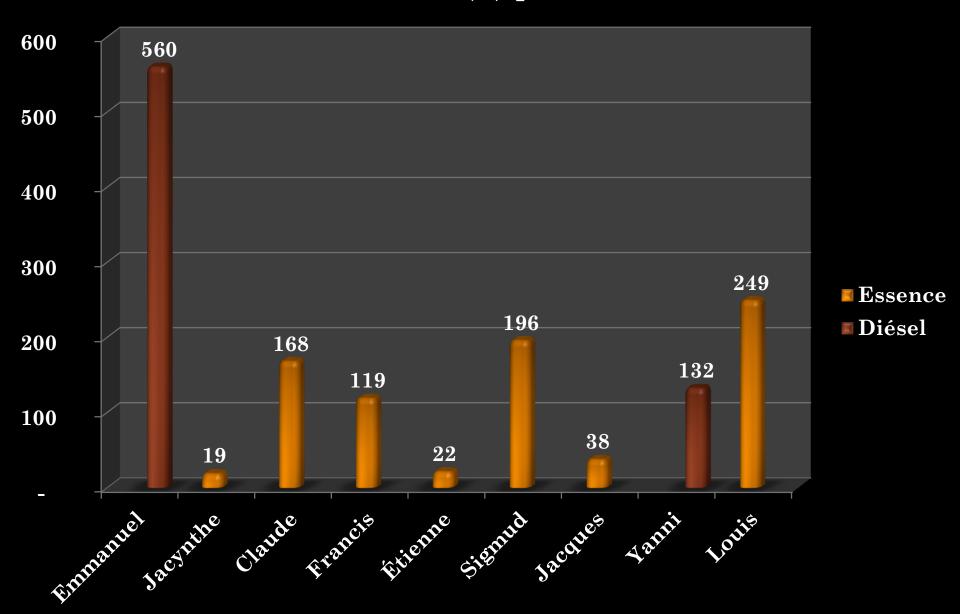
	Émissions (t- CO_2 é)
CO_2	0,02823
\mathbf{CH}_4	0,00001
N_2O	0,00016
Total	0,02840

Équation utilisée:

$$E_{eCO_2} = 1 \left(m_3 \times 1878 \frac{gCO_2}{m_3} \right) + 21 \left(m_3 \times 0.0037 \frac{gCH_4}{m_3} \right) + 310 \left(m_3 \times 0.0035 \frac{gN_2O}{m_3} \right) \times \frac{1}{1\,000\,000} \frac{tonne}{g}$$

Consommation de carburant - Véhicules

Facteurs d'émissions (g/l):


Gaz	Facteur d'émission (g/l) ¹	
	Essence	Diesel
CO_2	2289	2663
CH_4	0.140	0.051
N_2O	0.022	0.220

¹Source: http://www.ec.gc.ca/ges-ghg/default.asp?lang=Fr&n=AC2B7641-1

Carburant consommé (L) par évaluateur - 2011

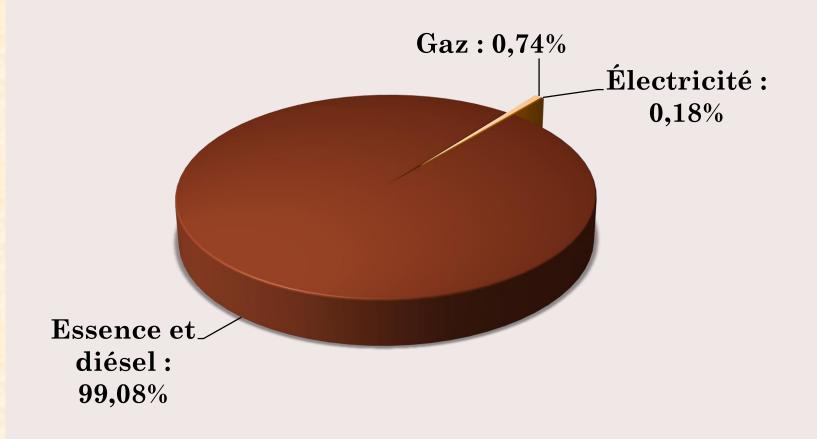
	$ m \acute{E}missions$ (t- $ m CO_2\acute{e}$)		
	Essence	Diésel	Total
${ m CO}_2$	1,8584	1,8440	3,7030
CH_4	0,0023	0,0007	0,0030
N_2O	0,0055	0,0473	0,0528
Total:	1,866	1,892	3,759

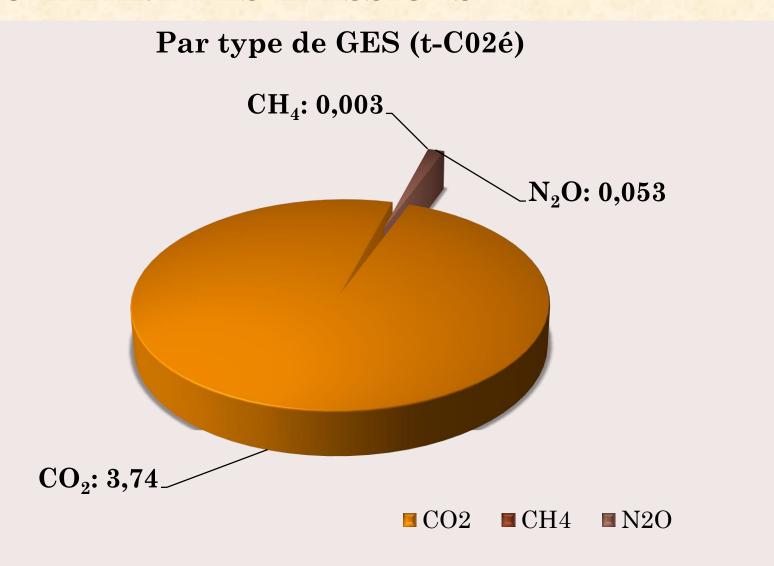
Équations utilisées:

Pour l'essence

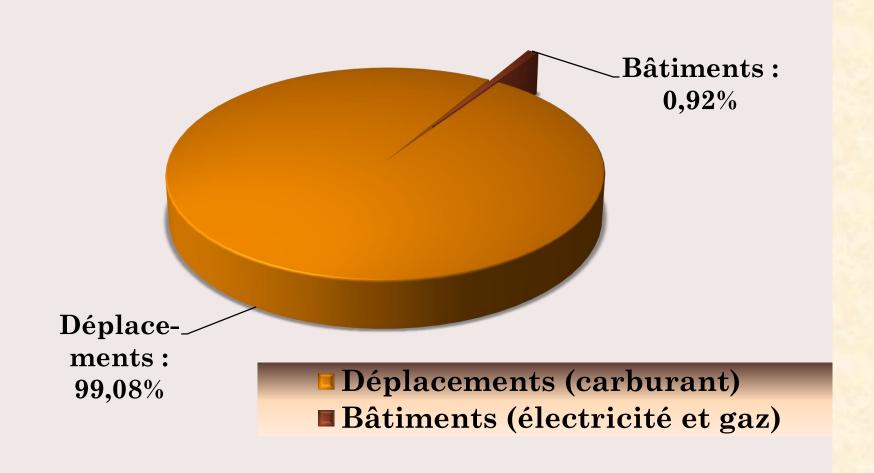
$$E_{eCO_2} = 1 \left(I \times 2289 \ \frac{gCO_2}{I} \right) + 21 \left(I \times 0.14 \frac{gCH_4}{I} \right) + 310 \left(I \times 0.022 \frac{gN_2O}{I} \right) \times \frac{1}{1000000} \frac{tonne}{g}$$

• Pour le diésel


$$E_{eCO_2} = 1 \left(I \times 2663 \frac{gCO_2}{I} \right) + 21 \left(I \times 0.051 \frac{gCH_4}{I} \right) + 310 \left(I \times 0.220 \frac{gN_2O}{I} \right) \times \frac{1}{1000000} \frac{tonne}{g}$$


Type d'émission	Émissions (t- CO_2 é)
Directes	3,790
Énergie indirectes	0,007
Indirectes	0,028
Total:	3,83

% par secteur énergétique



Par secteur d'activités

ÉVALUATION ET RÉDUCTION DE L'INCERTITUDE

Données	${f Incertitude^1}$
Kilométrage parcouru	Moyenne
L/100km	Très faible
Facteurs d'émission	Faible
Incertitude totale	Moyenne

¹Très faible < 1%, faible 1-5%, Moyenne 5-10%, Élevée +10%

CONCLUSION

- o Émissions de 3,8 tonnes de CO₂é en 2011.
- o A permis d'évaluer l'impact carbone de l'entreprise;
- Combustion de ressources fossiles (transport et chauffage) : LA source de GES : 99,82% des émissions.
- Source marginale issue de la consommation électrique :
 0,18% des émissions.
- o Diffusion des résultats sur le site Internet d'Écohabitation
- o Compensation en double des émissions de 2011 selon l'approche « Préventif pour le climat ».
- o Modestes actions qui influenceront peut-être d'autres entreprises de services. Espérons-le!

DIRECTIVE POUR LE MANUEL DE GESTION

- o Système de gestion
- Manuel de gestion
- o Politique, stratégie et cibles
- But et objectifs
- o Parties intéressées
- o Limites, normes et protocoles
- o Types de GES
- o Méthodes de recensement

GESTION DE L'INVENTAIRE DE GES

- o Marches à suivre :
 - Surveillance et cueillette des données;
 - Calculs;
 - Facteurs d'émissions, sources et références;
- o Gestion des données:
 - Sauvegardées dans un chiffrier;
 - Personne responsable;
 - Participation des employés (transmissions des données);
- o Mesure de l'incertitude.

